歡迎來到全傑科技

今日訪客: 0
線上訪客:

本軟體最新開課活動

目前沒有相關活動!!!
本軟體之前的活動!!
本軟體有產品說明會, 請洽本公司!!

下載專區 Download

活動資訊

  • 目前尚無任何訓練課程!!

聯絡我們

姓名:
Email:
聯絡電話:
單位:
部門:
附件:
您的留言:

提供專業軟體代購服務
如有未列於網站之產品需求
歡迎來電洽詢,感謝您!
電話:(02)2507-8298

LISREL/PRELIS 10
結構方程模式分析軟體
Structural Equation Modeling
軟體代號:882
瀏覽次數:17645
WindowsXPWindowsVISTAWindows7Windows8
多人版
教育版
商業版
再啟動服務
試用版
在地教學
遠端安裝啟動服務
原廠技術服務
產品說明會
教育訓練
教學範例檔
中文安裝手冊
永久授權
中文型錄
安裝序號
合法保證
原廠手冊
電子英文手冊
64 Bit
ESD網路下載
影音教學檔
Features
L  LISREL

The 32-bit application LISREL is intended for:

  • Standard structural equation modeling
  • Multilevel structural equation modeling

These methods are available for the following data types:

  • Complete and incomplete complex survey data on continuous variables
  • Complete and incomplete simple random sample data on ordinal and continuous variables
P  PRELIS

PRELIS is a 32-bit application which can be used for:

  • Data manipulation
  • Data transformation
  • Data generatiion
  • Computing moment matrices
  • Computing asymptotic covariance matrices of sample moments
  • Imputation by matching
  • Multiple imputation
  • Multiple linear regression
  • Logistic regression
  • Univariate and multivariate censored regression
  • ML and MINRES exploratory factor analysis
M  MULTILEV

MULTILEV fits multilevel linear and nonlinear models to multilevel data from simple random and complex survey designs. It allows for models with continuous and categorical response variables.

S  SURVEYGLIM

SURVEYGLIM fits Generalized LInear Models (GLIMs) to data from simple random and complex survey designs.
Models for the following sampling distributions are available.

  • Multinomial
  • Bernoulli
  • Binomial
  • Negative Binomial
  • Poisson
  • Normal
  • Gamma
  • Inverse Gaussian
C  CATFIRM

CATFIRM implements formal inference-based recursive modeling for categorical outcome variables.

C  CONFIRM

CONFIRM implements formal inference-based recursive modeling for continuous outcome variables.

M  MAPGLIM

MAPGLIM implements the Maximum A Priori (MAP) method to fit generalized linear models to multilevel data.